2019
September
August
June
May
March
February
January


2018
November
October
September
August
July
June
May
April
March
February
January


2017
December
November
October
September
August
July
June
May
April
March
February


Categories

All Episodes
Archives
Categories
Now displaying: August, 2017
Aug 18, 2017

Please join us as Dr. Aryn Gittis, associate professor in Biological Sciences and the Center for the Neural Basis of Cognition at Carnegie Mellon University, discusses the neural circuitry of the basal ganglia, a brain system involved in movement, learning, motivation, and reward.  Dysfunction of neural circuits in the basal ganglia is thought to play a role in neurological disorders such as Parkinson’s disease, Huntington’s disease, Tourette syndrome, and dystonia, as well as many neuropsychiatric disorders, including anxiety, OCD, and addiction. Dr. Gittis will explain her novel approach to effectively treating Parkinson’s disease by controlling the interaction among brain cells (neurons) in the basal ganglia. In normal function, neurons talk to each other to create normal function. When neurons stop talking to one another, the pattern changes and causes the shaking that we see in Parkinson’s. Currently, the therapeutic effects of standard, high frequency Deep Brain Stimulation (DBS) (Episode - The Mystery of The Human Brian) controls the debilitating motor symptoms of patients with Parkinson’s disease but rapidly decays once the stimulation is turned off.  Dr. Gittis is working to develop therapy that extends the effects of DBS for patients with Parkinson’s disease to have ongoing, uninterrupted relief.

Aug 5, 2017

Ingestible electronic devices have the potential to obviate many of the challenges associated with chronic implants such as risk of infection, chronic inflammation, and costly surgical procedures. Examples of ingestible electronics not only include edible cameras, but also ingestible event monitors, and integrated smart drug delivery systems.

Today, scientists are working on a variety of new non-toxic, biologically friendly ingestible electronics that can be ingested and implanted in the body. These medical devices, made from materials that are naturally produced in the body, can be programmed to deliver medicines, perform lifesaving activities from inside the body and also report back information from a disease site or problem area in a patient. These edible electronics also need a power source that is biocompatible or biodegradable. In this episode, Dr. Chris Bettinger, one of the world’s leading experts on ingestible devices will discuss all of the exciting possibilities of edible electronics.

1